Synthetic Carbon-based HMF-Selective Sorbents

Scientific Achievement

Developed the highest-adsorption performance carbons for 5-hydroxymethyl furfural (HMF).

Significance and Impact

- Adsorption-selectivity exceeding best commercial sorbent, BP2000, enhances viability of selective DMSO-based dehydration of fructose to HMF.
- Novel hydrothermally stable catalytic supports.
- Structure-function insights developed for HMFselective carbon sorbents.

Research Details

- HMF/fructose adsorption from DMSO onto commercial and synthetic carbons elucidated.
- Structure-function relations linking adsorption capacity/selectivity to carbon ultramicroporosity/polarity established and found to transcend different classes of synthetic carbons.
- Design rules leveraged for synthesizing new class of meso-microporous carbons (Meso C) with superior HMF adsorption selectivity.

W.C. Yoo, N. Rajabbeigi, E. Mallon, M. Tsapatsis, M.A. Snyder*, *Micropor. Mesopor. Mater.* 2013 (under revision).

Work was performed at Lehigh University and the University of Minnesota

